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= Solar-radiation computation: fundamental in climate modeling

=  Radiative transfer eq. for a plane-parallel homog. atmos.

= Gauss-exp. for intensity & Legendre-exp. for phase. fune.

— - —
- Gcl\/l-COupIWputational constiaints

=~ Resort to simplest two-stream approximations
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F exp(-t/p,)

Surface

L= CEE GCM lllSW. layer reflectance and transmittance
_ClEaIEskyz2Estreami (I1S), WHOIE=sky: 6-Eddington (DE)+

sENoniour-stream (DFS): matrix formulation by Lieu et al. (1988)

compromise between accuracy & efficiency
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= Code input: Layerﬂeuda‘:raeﬁon pptlcal depth smgle scatterlng albedo
_.:—(SSA) asymmetry.factor; underlying albedo, cosine of solar zenith
angle (CSZA)

= Code output:

> DE-equivalent: Layer reflectance & transmittance, with & without
reflection from underlying surface

~ Follow from originall DES fermulation bz solving BVP

IentalEayereliectancerétransmittance, with —

multiple/single reflection from underlying surface
Some manipulation to derive layer reflectance with

single reflection 5
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- = GCM run for 2 years (six menths for spin-up)

e — T e,
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= Parallel calls to shortwave radiation routine, with original & DFS-

modified codes, at every model-hour

= Include optical properties of aerosols simulated by CAM

= Examine changes in modeled SW flux at TOA and surface




Solar Eluye Simulations

July-zonal mean of diff. in surf. whole-sky, SW flux (Wm-=2)
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Solar Eluye Simulations

July-zonal mean of diff. in surf. whole-sky, SW flux (Wm-=2)
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Solar Eluye Simulations

Jan-zonal mean of diff. in surf. whole-sky, SW flux (Wrn?)
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Solar Eluye Simulations

April-zonal mean of diff. in clear-sky, SW flux (Wrn?)
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MY SILLOL0

 PHYSICSSUNTOOTE — ——
E_ RADNEW9
: Viain radiation
subroutine SHORTWS TSTREAM
SW radiation Clear-sky layer
subroutine SWLINK4 ref’ & trans —
SW column -
ref & trans
DELTAE
Whole-sky layer

ref & trans

Layer Trans = (1 — CF)xTS-Trans + CFxDE-Trans

13
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~ = Running-time ratio of modified to ori

————.
= Arrays eguivalenced in original scheme, so that TS computation is

e

ginal SHORTWS: 2 — 3

i

performed once

= Attempts to equivalence arrays for DFS code resulted in numerical

errors, so clear-sky DFS has to be called again in whole-sky

E—

lal to reduce running time of DFES

14



Cor lenS,2and . Recommendations

= DFS code developed! for SW. radiation computations in' CEC AGEM!

e

.~ = -Significant.changes inn GCM computation of solar fluxes:
> Whole-sky differences: within 5 Wm== TOA & 10 Wm=2 surface

can be as large as +20 and —40 Wm>
> Clear-sky differences: within 2 Wm:>

can be as large as +25 and —12 Wm=

‘rercentageﬂifferences: 4-6% TOA &

"EVespremimentaisiopIics & Nigh latitudes

= Mostly determined by cloud optical depth & solar zenith angle, and by

aerosol optical depth in a clear sky 15



Conclusions,and Recommendation

- - = = - - == ~—

.= Chou (1992): accuracy ofEI':ES computations in GCM within 7.5 Wm2

—

R

= Reduction of computational time?

= Further research: —

——

> Improvement of the overall accuracy of GCM' flux simulations

(Closure experiments against observational data)

16
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